# **Eigenvectors of Backwardshift on a Deformed Hilbert Space**

P. K. Das<sup>1</sup>

Received November 11, 1997

We study reproducing kernel and Coherent vectors in a deformed Hilbert space.

We consider the set

$$H_q = \{ f: f(z) = \sum a_n z^n \text{ where } \sum [n]! |a_n|^2 < \infty \}$$

where  $[n] = (1 - q^n)/(1 - q), 0 < q < 1.$ 

For  $f, g \in H_q$ ,  $f(z) = \sum_{n=0}^{\infty} a_n z^n$ ,  $g(z) = \sum_{n=0}^{\infty} b_n z^n$  we define addition and scalar multiplication as follows:

$$f(z) + g(z) = \sum_{n=0}^{\infty} (a_n + b_n) z^n$$
 (1)

and

$$\lambda \circ f(z) = \sum_{n=0}^{\infty} \lambda a_n \tag{2}$$

It is easily seen that  $H_q$  forms a vector space with respect to usual pointwise scalar multiplication and pointwise addition by (1) and (2). We observe that  $e_q(z) = \sum_{n=0}^{\infty} (z^n/[n]!)$ .

<sup>&</sup>lt;sup>1</sup>Physics and Applied Mathematics Unit, Indian Statistical Institute, Calcutta-700035, India; e-mail: daspk@isical.ac.in.

2364 Das

Now we define the inner product of two functions  $f(z) = \sum a_n z^n$  and  $g(z) = \sum b_n z^n$  belonging to  $H_q$  as

$$(f,g) = \sum [n]! \overline{a_n} b_n \tag{3}$$

The corresponding norm is given by

$$||f||^2 = (f, f) = \sum_{n=1}^{\infty} |n|! |a_n|^2 < \infty$$

With this norm derived from the inner product it can be shown that  $H_q$  is a complete normed space. Hence  $H_q$  forms a Hilbert space.

*Proposition 1.* The set  $\{z^n/\sqrt{[n]!}, n = 1, 2, 3, ...\}$  forms a complete orthonormal set.

*Proof.* If 
$$f_n = z^n / \sqrt{[n]!}$$
,  $n = 1, 2, 3, ...$ , then  $||f_n|| = (f_n, f_n)^{1/2} = 1$ 

and  $(f_n, f_m) = 0$ . Hence  $\{f_n\}$  forms an orthonormal set. Also, it is complete, for if  $f(z) = \sum a_n z^n \in H_a$ , then

$$(f_n, f) = [n]! \ a_n \frac{1}{\sqrt{[n]!}} = \sqrt{[n]!} \ a_n$$

Hence

$$\sum |(f_n, f)|^2 = \sum [n]! |a_n|^2 = ||f||^2$$

By Parseval's theorem,  $\{f_n\}$  is complete.

### 1. REPRODUCING KERNEL

Since  $H_q$  is a functional Hilbert space, the linear functional  $f \to f(z)$  on  $H_q$  is bounded for every  $z \in \mathbb{C}$ . Consequently, there exists, for each  $z \in \mathbb{C}$ , an element  $K_z$  of  $H_q$  such that  $f(z) = (K_z, f)$  for all  $f \in H_q$ . The function  $K(w, z) = K_z(w)$  is called the kernel function or the reproducing kernel of  $H_q$ .

Consider the Fourier expansion of  $K_z$  with respect to the orthonormal basis  $f_n(z)$ :

$$K_z = \sum_n (f_n, K_z) f_n = \sum_n \overline{f_n}(z) f_n$$

Hence

$$K(w, z) = K_{z}(w) = (K_{w}, K_{z}) = \sum_{n} f_{n}(w) \overline{f_{n}(z)}$$
$$= \sum_{n} \frac{w^{n}}{\sqrt{[n]!}} \frac{\overline{z}^{n}}{\sqrt{[n]!}} = \sum_{n} \frac{(\overline{z}w)^{n}}{[n]!} = e_{q}(\overline{z}w)$$

Thus  $K(w, z) = e_q(\overline{z}w)$  is the reproducing kernel for  $H_q$ .

### 2. EIGENVECTORS

We consider the following actions on  $H_q$ :

$$Tf_n = \sqrt{[n] f_{n-1}}$$

$$T^*f_n = \sqrt{[n+1] f_{n+1}}$$
(4)

T is the backward shift and its adjoint  $T^*$  is the forward shift operator on  $H_q$ .

# 2.1. Backwardshift

Now we shall find the solution of the following eigenvalue equation:

$$Tf = \alpha f \tag{5}$$

We have

$$f(\alpha) = \sum_{n=0}^{\infty} a_n \alpha^n = \sum_{n=0}^{\infty} a_n \sqrt{[n]!} f_n$$
 (6)

$$Tf(\alpha) = \sum_{n=0}^{\infty} a_n \sqrt{[n]!} \ Tf_n$$

$$= \sum_{n=1}^{\infty} a_n \sqrt{[n]!} \ \sqrt{[n]} f_{n-1}$$

$$= \sum_{n=0}^{\infty} a_{n+1} \sqrt{[n+1]!} \ \sqrt{[n+1]} f_n$$

$$(7)$$

$$\alpha f(\alpha) = \alpha \sum_{n=0}^{\infty} a_n \alpha^n = \alpha \sum_{n=0}^{\infty} a_n \sqrt{[n]!} f_n$$
 (8)

From (5)–(8) we observe that  $a_n$  satisfies the following difference equation:

$$a_{n+1}\sqrt{[n+1]}\sqrt{[n+1]} = \alpha a_n$$
 (9)

That is,

$$a_{n+1} = \frac{\alpha a_n}{[n+1]} \tag{10}$$

Hence,

$$a_1 = \frac{\alpha a_0}{[1]}, \qquad a_2 = \frac{\alpha a_1}{[2]} = \frac{\alpha^2 a_0}{[2]!}, \qquad a_3 = \frac{\alpha a_2}{[3]} = \frac{\alpha^3 a_0}{[3]!}, \dots$$

2366 Das

Thus,

$$a_n = \frac{\alpha^n a_0}{[n]!}$$

Hence,

$$f(\alpha) = \sum a_n \sqrt{[n]!} f_n = a_0 \sum \frac{\alpha^n}{\sqrt{[n]!}} f_n$$

We choose  $a_0$  so that  $f(\alpha)$  is normalized:

$$1 = (f(\alpha), f(\alpha)) = \sum [n]! |a_n|^2 = \sum [n]! \frac{|a_0|^2 |\alpha|^{2n}}{([n]!)^2}$$
$$= |a_0|^2 \sum \frac{(|\alpha|^2)^n}{[n]!} = |a_0|^2 e_q(|\alpha|^2)$$

Thus, aside from a trivial phase

$$a_n = e_q (|\alpha|^2)^{-1/2} \frac{\alpha^n}{[n]!}$$

So, the eigenvector of T is

$$f(\alpha) = e_q \left( |\alpha|^2 \right)^{-1/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{[n]!}} f_n \tag{11}$$

We shall call  $f(\alpha)$  a **coherent vector** in  $H_q$ .

# 2.2. Square of Backwardshift

Here we shall find the following eigenvalue equation:

$$T^2 f = \alpha^2 f \tag{12}$$

We have

$$T^{2}f(\alpha) = T \sum_{n=0}^{\infty} a_{n+1} \sqrt{[n+1]!} \sqrt{[n+1]!} \int_{n} [n+1] f_{n}$$

$$= \sum_{n=1}^{\infty} a_{n+1} \sqrt{[n+1]!} \sqrt{[n+1]!} \sqrt{[n+1]} \int_{n-1} [n+1] f_{n}$$

$$= \sum_{n=0}^{\infty} a_{n+2} \sqrt{[n+2]!} \sqrt{[n+2]} \sqrt{[n+1]} f_{n}$$

$$\alpha^{2}f(\alpha) = \sum_{n=0}^{\infty} \alpha^{2} a_{n} \sqrt{[n]!} f_{n}$$
(14)

From (12)–(14) we see that  $a_n$  satisfies the following difference equation:

$$a_{n+2}\sqrt{[n+2!]}\sqrt{[n+2]}\sqrt{[n+1]} = \alpha^2 a_n\sqrt{[n]!}$$

Thus,

$$a_{n+2} = \frac{\alpha^2 a_n}{[n+2][n+1]} \tag{15}$$

Hence,

$$a_2 = \frac{\alpha^2 a_0}{[2]!}, \qquad a_4 = \frac{\alpha^2 a_2}{[4][3]} = \frac{\alpha^4 a_0}{[4]!}, \qquad a_6 = \frac{\alpha^2 a_4}{[6][5]} = \frac{\alpha^6 a_0}{[6]!}, \dots$$

and

$$a_3 = \frac{\alpha^2 a_1}{[3][2]} = \frac{\alpha^2 a_1}{[3]!}, \qquad a_5 = \frac{\alpha^2 a_3}{[5][4]} = \frac{\alpha^4 a_1}{[5]!}, \dots$$

Thus,

$$f(\alpha) = a_0 f_0 + a_1 f_1 + a_2 \sqrt{[2]!} f_2 + a_3 \sqrt{[3]!} f_3 + \cdots$$

$$= (a_0 f_0 + a_2 \sqrt{[2]!} f_2 + a_4 \sqrt{[4]!} f_4 + \cdots)$$

$$+ (a_1 f_1 + a_3 \sqrt{[3]!} f_3 + a_5 \sqrt{[5]!} f_5 + \cdots)$$

$$= a_0 \left( f_0 + \frac{\alpha^2}{\sqrt{[2]!}} f_2 + \frac{\alpha^4}{\sqrt{[4]!}} f_4 + \cdots \right)$$

$$+ a_1 \left( f_1 + \frac{\alpha^2}{\sqrt{[3]!}} f_3 + \frac{\alpha^4}{\sqrt{[5]!}} f_5 + \cdots \right)$$

$$= a_0 \left( \frac{g(\alpha) + g(-\alpha)}{2N} \right) + \frac{a_1}{\alpha} \left( \frac{g(\alpha) - g(-\alpha)}{2N} \right)$$

$$= \left( \frac{a_0}{2N} + \frac{a_1}{2\alpha N} \right) g(\alpha) + \left( \frac{a_0}{2N} - \frac{a_1}{2\alpha N} \right) g(-\alpha)$$

$$= Kg(\alpha) + K'g(-\alpha)$$

where we have taken  $g(\alpha) = e_q[|\alpha|^2]$ .  $f_1(\alpha)$  and  $f_1(\alpha)$  satisfy equation (5). Also we have taken  $K = a_0/2N + a_1/(2\alpha N)$  and  $K' = a_0/2N - a_1/(2\alpha N)$  with  $N = e_q(|\alpha|^2)^{-1/2}$ .

2368 Das

We choose  $a_0$  and  $a_1$  so that  $f(\alpha)$  is normalized:

$$1 = (f(\alpha), f(\alpha)) = e_q^{|\alpha|^2} [|K|^2 + |K'|^2] + e_q^{-|\alpha|^2} [2 \operatorname{Re} KK']$$

where we have used the facts

$$(g(\alpha), g(\alpha)) = e_q^{|\alpha|^2}$$

$$(g(-\alpha), g(-\alpha)) = e_q^{|\alpha|^2}$$

$$(g(\alpha), g(-\alpha)) = e_q^{-|\alpha|^2}$$

# 3. PROPERTIES OF COHERENT VECTORS

Coherent vectors are not orthogonal, for

$$(f(\alpha), f(\alpha')) = e_q(|\alpha|^2)^{-1/2} \cdot e_q(|\alpha'|^2)^{-1/2} \sum_{n=0}^{\infty} [n]! \frac{\overline{\alpha}^n}{[n]!} \frac{\alpha'^n}{[n]!}$$

$$= e_q(|\alpha|^2)^{-1/2} e_q(|\alpha'|^2) \cdot e_q(\overline{\alpha}\alpha')$$
(16)

Nevertheless, the coherent vectors are complete, in fact, overcomplete—they form a resolution of the identity

$$I = \frac{1}{\pi} \int_{\alpha \in \mathbb{C}} d\mu(\alpha) \left| f(\alpha) \right\rangle \langle f(\alpha) | \tag{17}$$

where  $d\mu(\alpha) = e_q(|\alpha|^2) e_q(-|\alpha|^2) \gamma d_q|\alpha|d\theta$  with  $\alpha = \gamma e^{2\theta}$ .

To prove this we define the operator

$$|f(\alpha)\rangle\langle f(\alpha)|: H_q \to H_q$$
 (18)

by

$$|f(\alpha)\rangle\langle f(\alpha)|f(z) = (f(\alpha), f(z))f(\alpha)$$
(19)

with  $f(z) = \sum_{j=1}^{\infty} b_n x^n$ .

Now,

$$(f(\alpha), f(z)) = e_q(|\alpha|^2)^{-1/2} \sum_{n=0}^{\infty} [n]! \frac{\overline{\alpha}^n}{[n]!} b_n$$

Then,

$$(f(\alpha), f(z)) f(\alpha) = e_q(|\alpha|^2)^{-1} \sum_{m,n=0}^{\infty} \frac{\alpha^m}{\sqrt{[m]!}} \overline{\alpha}^n b_n f_m$$

Hence,

$$\frac{1}{\pi} \int_{\alpha \in \mathbb{C}} d\mu \left| f(\alpha) \right\rangle \left\langle f(\alpha) \right| f(z) = \sum_{m,n=0}^{\infty} \frac{f_m}{\sqrt{[m]!}} b_n \frac{1}{\pi} \int_0^{\infty} r \, d_q r \, e_q^{-r^2} r^{m+n} \\
\times \int_0^{2\pi} d\theta \, e^{i(m-n)\theta} \\
= \sum_{n=0}^{\infty} \frac{f_n}{\sqrt{[n]!}} b_n \int_0^{\infty} 2r \, d_q r \, e_q^{-r^2} r^{2n} \\
= \sum_{n=0}^{\infty} \frac{f_n}{\sqrt{[n]!}} b_n \int_0^{\infty} d_q x \, e_q^{-x} x^n \\
= \sum_{n=0}^{\infty} \sqrt{[n]!} b_n f_n \\
= f(z) \tag{20}$$

where we have taken  $x = r^2$  and utilized the fact that  $\int_0^\infty d_q x \, e_q^{-x} x^n = [n]!$  (Gray and Nelson, 1990).

#### REFERENCES

- Bracken, A. J., McAnally, D. S., Zhang, R. B., and Gould, M. D. (1991). A q-analogue of Bargmann space and its scalar product, *Journal of Physics A*, 24, 1379–1391.
- Brif, C. (1996). Two photon algebra eigenstates— A unified approach to squeezing, Annals of Physics, 251, 180–207.
- Das, P. K. (1990).  $H^{\infty}$  interpolation into a class of analytic functions, *Demonstratio Mathematica*, 23, 841–845.
- Gray, R. W., and Nelson, C. A. (1990). A completeness relation for the q-analogue coherent states by q-integration, *Journal of Physics A*, 23, L945–L950.